Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Glob Health ; 13: 06004, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2203072

ABSTRACT

Background: Debate exists about whether extra protection of elderly and other vulnerable individuals is feasible in COVID-19. We aimed to assess the relative infection rates in the elderly vs the non-elderly and, secondarily, in children vs adults. Methods: We performed a systematic review and meta-analysis of seroprevalence studies conducted in the pre-vaccination era. We identified representative national studies without high risk of bias through SeroTracker and PubMed searches (last updated May 17, 2022). We noted seroprevalence estimates for children, non-elderly adults, and elderly adults, using cut-offs of 20 and 60 years (or as close to these ages, if they were unavailable) and compared them between different age groups. Results: We included 38 national seroprevalence studies from 36 different countries comprising 826 963 participants. Twenty-six of these studies also included pediatric populations and twenty-five were from high-income countries. The median ratio of seroprevalence in elderly vs non-elderly adults (or non-elderly in general, if pediatric and adult population data were not offered separately) was 0.90-0.95 in different analyses, with large variability across studies. In five studies (all in high-income countries), we observed significant protection of the elderly with a ratio of <0.40, with a median of 0.83 in high-income countries and 1.02 elsewhere. The median ratio of seroprevalence in children vs adults was 0.89 and only one study showed a significant ratio of <0.40. The main limitation of our study is the inaccuracies and biases in seroprevalence studies. Conclusions: Precision shielding of elderly community-dwelling populations before the availability of vaccines was indicated in some high-income countries, but most countries failed to achieve any substantial focused protection. Registration: Open Science Framework (available at: https://osf.io/xvupr).


Subject(s)
COVID-19 , Child , Humans , Adult , Middle Aged , COVID-19/epidemiology , Seroepidemiologic Studies , Bias , Vaccination
2.
Environ Res ; 216(Pt 3): 114655, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2086168

ABSTRACT

The largest burden of COVID-19 is carried by the elderly, and persons living in nursing homes are particularly vulnerable. However, 94% of the global population is younger than 70 years and 86% is younger than 60 years. The objective of this study was to accurately estimate the infection fatality rate (IFR) of COVID-19 among non-elderly people in the absence of vaccination or prior infection. In systematic searches in SeroTracker and PubMed (protocol: https://osf.io/xvupr), we identified 40 eligible national seroprevalence studies covering 38 countries with pre-vaccination seroprevalence data. For 29 countries (24 high-income, 5 others), publicly available age-stratified COVID-19 death data and age-stratified seroprevalence information were available and were included in the primary analysis. The IFRs had a median of 0.034% (interquartile range (IQR) 0.013-0.056%) for the 0-59 years old population, and 0.095% (IQR 0.036-0.119%) for the 0-69 years old. The median IFR was 0.0003% at 0-19 years, 0.002% at 20-29 years, 0.011% at 30-39 years, 0.035% at 40-49 years, 0.123% at 50-59 years, and 0.506% at 60-69 years. IFR increases approximately 4 times every 10 years. Including data from another 9 countries with imputed age distribution of COVID-19 deaths yielded median IFR of 0.025-0.032% for 0-59 years and 0.063-0.082% for 0-69 years. Meta-regression analyses also suggested global IFR of 0.03% and 0.07%, respectively in these age groups. The current analysis suggests a much lower pre-vaccination IFR in non-elderly populations than previously suggested. Large differences did exist between countries and may reflect differences in comorbidities and other factors. These estimates provide a baseline from which to fathom further IFR declines with the widespread use of vaccination, prior infections, and evolution of new variants.


Subject(s)
COVID-19 , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , Young Adult , Comorbidity , COVID-19/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
3.
Eur J Epidemiol ; 37(3): 235-249, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1750758

ABSTRACT

This mixed design synthesis aimed to estimate the infection fatality rate (IFR) of Coronavirus Disease 2019 (COVID-19) in community-dwelling elderly populations and other age groups from seroprevalence studies. Protocol: https://osf.io/47cgb . Eligible were seroprevalence studies done in 2020 and identified by any of four existing systematic reviews; with ≥ 500 participants aged ≥ 70 years; presenting seroprevalence in elderly people; aimed to generate samples reflecting the general population; and whose location had available data on cumulative COVID-19 deaths in elderly (primary cutoff ≥ 70 years; ≥ 65 or ≥ 60 also eligible). We extracted the most fully adjusted (if unavailable, unadjusted) seroprevalence estimates; age- and residence-stratified cumulative COVID-19 deaths (until 1 week after the seroprevalence sampling midpoint) from official reports; and population statistics, to calculate IFRs adjusted for test performance. Sample size-weighted IFRs were estimated for countries with multiple estimates. Thirteen seroprevalence surveys representing 11 high-income countries were included in the main analysis. Median IFR in community-dwelling elderly and elderly overall was 2.9% (range 1.8-9.7%) and 4.5% (range 2.5-16.7%) without accounting for seroreversion (2.2% and 4.0%, respectively, accounting for 5% monthly seroreversion). Multiple sensitivity analyses yielded similar results. IFR was higher with larger proportions of people > 85 years. The IFR of COVID-19 in community-dwelling elderly is lower than previously reported.


Subject(s)
COVID-19 , Aged , Humans , Independent Living , SARS-CoV-2 , Seroepidemiologic Studies
4.
BMC Infect Dis ; 21(1): 1170, 2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1526605

ABSTRACT

BACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
6.
Environ Res ; 204(Pt C): 112342, 2022 03.
Article in English | MEDLINE | ID: covidwho-1499856

ABSTRACT

OBJECTIVES: Most countries initially deployed COVID-19 vaccines preferentially in elderly populations. We aimed to evaluate whether population-level vaccine effectiveness is heralded by an increase in the relative proportion of deaths among non-elderly populations that were less covered by vaccination programs. ELIGIBLE DATA: We collected data from 40 countries on age-stratified COVID-19 deaths during the vaccination period (1/14/2021-5/31/2021) and two control periods (entire pre-vaccination period and excluding the first wave). MAIN OUTCOME MEASURES: We meta-analyzed the proportion of deaths in different age groups in vaccination versus control periods in (1) countries with low vaccination rates; (2) countries with age-independent vaccination policies; and (3) countries with standard age-dependent vaccination policies. RESULTS: Countries that prioritized vaccination among older people saw an increasing share of deaths among 0-69 year old people in the vaccination versus the two control periods (summary proportion ratio 1.32 [95 CI% 1.24-1.41] and 1.35 [95 CI% 1.26-1.44)]. No such change was seen on average in countries with age-independent vaccination policies (1.05 [95 CI% 0.78-1.41 and 0.97 [95 CI% 0.95-1.00], respectively) and limited vaccination (0.93 [95 CI% 0.85-1.01] and 0.95 [95 CI% 0.87-1.03], respectively). Proportion ratios were associated with the difference of vaccination rates in elderly versus non-elderly people. No significant changes occurred in the share of deaths in age 0-49 among all 0-69 deaths in the vaccination versus pre-vaccination periods. CONCLUSIONS: The substantial shift in the age distribution of COVID-19 deaths in countries that rapidly implemented vaccination predominantly among elderly provides evidence for the population level-effectiveness of COVID-19 vaccination and a favorable evolution of the pandemic towards endemicity with fewer elderly deaths.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , Age Distribution , Aged , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2 , Vaccination , Vaccine Efficacy , Young Adult
8.
Nat Commun ; 12(1): 2349, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1189222

ABSTRACT

Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aim to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. We present a rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/ ). We systematically identified unpublished RCTs (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, Cochrane COVID-registry up to June 11, 2020), and published RCTs (PubMed, medRxiv and bioRxiv up to October 16, 2020). All-cause mortality has been extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine and chloroquine. Prespecified subgroup analyses include patient setting, diagnostic confirmation, control type, and publication status. Sixty-three trials were potentially eligible. We included 14 unpublished trials (1308 patients) and 14 publications/preprints (9011 patients). Results for hydroxychloroquine are dominated by RECOVERY and WHO SOLIDARITY, two highly pragmatic trials, which employed relatively high doses and included 4716 and 1853 patients, respectively (67% of the total sample size). The combined OR on all-cause mortality for hydroxychloroquine is 1.11 (95% CI: 1.02, 1.20; I² = 0%; 26 trials; 10,012 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I² = 0%; 4 trials; 307 patients). We identified no subgroup effects. We found that treatment with hydroxychloroquine is associated with increased mortality in COVID-19 patients, and there is no benefit of chloroquine. Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Pregnancy Complications, Infectious/mortality , Adult , COVID-19/complications , COVID-19/virology , Child , Chloroquine/administration & dosage , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Comorbidity , Female , Humans , Hydroxychloroquine/administration & dosage , International Cooperation , Odds Ratio , Patient Participation/statistics & numerical data , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Randomized Controlled Trials as Topic/statistics & numerical data , SARS-CoV-2
9.
JAMA ; 325(12): 1185-1195, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1178926

ABSTRACT

Importance: Convalescent plasma is a proposed treatment for COVID-19. Objective: To assess clinical outcomes with convalescent plasma treatment vs placebo or standard of care in peer-reviewed and preprint publications or press releases of randomized clinical trials (RCTs). Data Sources: PubMed, the Cochrane COVID-19 trial registry, and the Living Overview of Evidence platform were searched until January 29, 2021. Study Selection: The RCTs selected compared any type of convalescent plasma vs placebo or standard of care for patients with confirmed or suspected COVID-19 in any treatment setting. Data Extraction and Synthesis: Two reviewers independently extracted data on relevant clinical outcomes, trial characteristics, and patient characteristics and used the Cochrane Risk of Bias Assessment Tool. The primary analysis included peer-reviewed publications of RCTs only, whereas the secondary analysis included all publicly available RCT data (peer-reviewed publications, preprints, and press releases). Inverse variance-weighted meta-analyses were conducted to summarize the treatment effects. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation. Main Outcomes and Measures: All-cause mortality, length of hospital stay, clinical improvement, clinical deterioration, mechanical ventilation use, and serious adverse events. Results: A total of 1060 patients from 4 peer-reviewed RCTs and 10 722 patients from 6 other publicly available RCTs were included. The summary risk ratio (RR) for all-cause mortality with convalescent plasma in the 4 peer-reviewed RCTs was 0.93 (95% CI, 0.63 to 1.38), the absolute risk difference was -1.21% (95% CI, -5.29% to 2.88%), and there was low certainty of the evidence due to imprecision. Across all 10 RCTs, the summary RR was 1.02 (95% CI, 0.92 to 1.12) and there was moderate certainty of the evidence due to inclusion of unpublished data. Among the peer-reviewed RCTs, the summary hazard ratio was 1.17 (95% CI, 0.07 to 20.34) for length of hospital stay, the summary RR was 0.76 (95% CI, 0.20 to 2.87) for mechanical ventilation use (the absolute risk difference for mechanical ventilation use was -2.56% [95% CI, -13.16% to 8.05%]), and there was low certainty of the evidence due to imprecision for both outcomes. Limited data on clinical improvement, clinical deterioration, and serious adverse events showed no significant differences. Conclusions and Relevance: Treatment with convalescent plasma compared with placebo or standard of care was not significantly associated with a decrease in all-cause mortality or with any benefit for other clinical outcomes. The certainty of the evidence was low to moderate for all-cause mortality and low for other outcomes.


Subject(s)
COVID-19/therapy , Adult , Bias , COVID-19/mortality , Cause of Death , Female , Humans , Immunization, Passive/adverse effects , Length of Stay , Male , Placebos/therapeutic use , Randomized Controlled Trials as Topic , Respiration, Artificial , Standard of Care , Treatment Outcome , COVID-19 Serotherapy
11.
Environ Res ; 195: 110856, 2021 04.
Article in English | MEDLINE | ID: covidwho-1077888

ABSTRACT

OBJECTIVE: To examine whether the age distribution of COVID-19 deaths and the share of deaths in nursing homes changed in the second versus the first pandemic wave. ELIGIBLE DATA: We considered all countries that had at least 4000 COVID-19 deaths occurring as of January 14, 2021, at least 200 COVID-19 deaths occurring in each of the two epidemic wave periods; and which had sufficiently detailed information available on the age distribution of these deaths. We also considered countries with data available on COVID-19 deaths of nursing home residents for the two waves. MAIN OUTCOME MEASURES: Change in the second wave versus the first wave in the proportion of COVID-19 deaths occurring in people <50 years ("young deaths") among all COVID-19 deaths and among COVID-19 deaths in people <70 years old; and change in the proportion of COVID-19 deaths in nursing home residents among all COVID-19 deaths. RESULTS: Data on age distribution were available for 14 eligible countries. Individuals <50 years old had small absolute difference in their share of the total COVID-19 deaths in the two waves across 13 high-income countries (absolute differences 0.0-0.4%). Their proportion was higher in Ukraine, but it decreased markedly in the second wave. The proportion of young deaths was lower in the second versus the first wave (summary prevalence ratio 0.81, 95% CI 0.71-0.92) with large between-country heterogeneity. The proportion of young deaths among deaths <70 years did not differ significantly across the two waves (summary prevalence ratio 0.96, 95% CI 0.86-1.06). Eligible data on nursing home COVID-19 deaths were available for 11 countries. The share of COVID-19 deaths that were accounted by nursing home residents decreased in the second wave significantly and substantially in 8 countries (prevalence ratio estimates: 0.36 to 0.78), remained the same in Denmark and Norway and markedly increased in Australia. CONCLUSIONS: In the examined countries, age distribution of COVID-19 deaths has been fairly similar in the second versus the first wave, but the contribution of COVID-19 deaths in nursing home residents to total fatalities has decreased in most countries in the second wave.


Subject(s)
COVID-19 , Age Distribution , Aged , Australia , Humans , Middle Aged , Norway , Nursing Homes , SARS-CoV-2 , Ukraine
12.
Environ Res ; 188: 109890, 2020 09.
Article in English | MEDLINE | ID: covidwho-626924

ABSTRACT

OBJECTIVE: To provide estimates of the relative rate of COVID-19 death in people <65 years old versus older individuals in the general population, the absolute risk of COVID-19 death at the population level during the first epidemic wave, and the proportion of COVID-19 deaths in non-elderly people without underlying diseases in epicenters of the pandemic. ELIGIBLE DATA: Cross-sectional survey of countries and US states with at least 800 COVID-19 deaths as of April 24, 2020 and with information on the number of deaths in people with age <65. Data were available for 14 countries (Belgium, Canada, France, Germany, India, Ireland, Italy, Mexico, Netherlands, Portugal, Spain, Sweden, Switzerland, UK) and 13 US states (California, Connecticut, Florida, Georgia, Illinois, Indiana, Louisiana, Maryland, Massachusetts, Michigan, New Jersey, New York, Pennsylvania). We also examined available data on COVID-19 deaths in people with age <65 and no underlying diseases. MAIN OUTCOME MEASURES: Proportion of COVID-19 deaths in people <65 years old; relative mortality rate of COVID-19 death in people <65 versus ≥65 years old; absolute risk of COVID-19 death in people <65 and in those ≥80 years old in the general population as of June 17, 2020; absolute COVID-19 mortality rate expressed as equivalent of mortality rate from driving a motor vehicle. RESULTS: Individuals with age <65 account for 4.5-11.2% of all COVID-19 deaths in European countries and Canada, 8.3-22.7% in the US locations, and were the majority in India and Mexico. People <65 years old had 30- to 100-fold lower risk of COVID-19 death than those ≥65 years old in 11 European countries and Canada, 16- to 52-fold lower risk in US locations, and less than 10-fold in India and Mexico. The absolute risk of COVID-19 death as of June 17, 2020 for people <65 years old in high-income countries ranged from 10 (Germany) to 349 per million (New Jersey) and it was 5 per million in India and 96 per million in Mexico. The absolute risk of COVID-19 death for people ≥80 years old ranged from 0.6 (Florida) to 17.5 per thousand (Connecticut). The COVID-19 mortality rate in people <65 years old during the period of fatalities from the epidemic was equivalent to the mortality rate from driving between 4 and 82 miles per day for 13 countries and 5 states, and was higher (equivalent to the mortality rate from driving 106-483 miles per day) for 8 other states and the UK. People <65 years old without underlying predisposing conditions accounted for only 0.7-3.6% of all COVID-19 deaths in France, Italy, Netherlands, Sweden, Georgia, and New York City and 17.7% in Mexico. CONCLUSIONS: People <65 years old have very small risks of COVID-19 death even in pandemic epicenters and deaths for people <65 years without underlying predisposing conditions are remarkably uncommon. Strategies focusing specifically on protecting high-risk elderly individuals should be considered in managing the pandemic.


Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Aged , Betacoronavirus , COVID-19 , Cross-Sectional Studies , Humans , Middle Aged , Pandemics , Risk , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL